Anova special cases with R: unbalanced and nested Anova

stats package - No install required

: numeric continuous variable Y A, B, C, ... : factor (categorical) variables **Goal:** Analyse the variation of between group means of a variable Y, where groups have different sizes and are defined by the different levels of the factors considered

Handling unbalance

Df Sum of Sq RSS AIC F value Pr(>F)

1 76.802 117.996 43.609 35.424 9.949e-06 ***

2 47.950 89.144 35.159 11.058 0.0006532 ***

41.194 21.404

When?

<none>

Δ

B

Unequal number of obs for all possible combinations of factors levels

Model building

If you use ANOVA type I SS, results depend on the factors order: fm <- aov(Y ~ A + B, data = data); summary(fm)</pre> fminv <- aov(Y ~ B + A, data = data);summary(fminv)</pre> > summary(fminv) > summary(fm) Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sa Mean Sa F value Pr(>F) 2 53.09 26.55 12.24 0.000383 *** 1 92.62 92.62 37.431 5.59e-06 *** В R 2 42.64 21.32 8.615 0.002 ** Α 1 76.80 76.80 35.42 9.95e-06 *** **Better use ANOVA type II SS:** drop1(object = fm, test = "F") drop1(object = fminv, test = "F")

Df Sum of Sa

<none>

В

RSS AIC F value Pr(>F)

41.194 21.404

2 47.950 89.144 35.159 11.058 0.0006532 ***

1 76.802 117.996 43.609 35.424 9.949e-06 ***

Including info at different levels: nested Anova When?

Each group is divided into two or more subgroups: Data structure	B1	A1 B2	B1	A2	2
<pre>Explore the data structure: data\$A_B = factor(data\$A:data\$ xtabs(formula = Y ~ A + A_B,</pre>	B) 1 2 3 4 5	A_B 1:D 1:N 0.631 0.634 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2:D 2: 0.000 0.00 0.603 0.60 0.000 0.00 0.000 0.00 0.000 0.00	N 3:D 0.000 5 0.000 0.623 0.000 0.000 0.000	3:N 0.000 0.000 0.618 0.000 0.000
Aodel buildina: includina different le	evels				

Μ

fm1 = aov(formula = Y ~ A + A/B, data = data)summary(fm1)

> summary(fm1)									
D	f	Sum Sq		Mean	Sq	F	value	Pr(>F)		
Α .	4	0.0003033	7.	583e-	-05		8.766	3.52e-05	***	
A:B	5	0.0000186	3.	.720e	-06		0.430	0.825		

This cheat sheet part of Raccoon - Statistical models with R | CC by Quantide | Learn more at http://www.quantide.com/web-books-overview/ | info@quantide.com | Updated: 02/17